On the Einstein-Weyl and conformal self-duality equations

نویسنده

  • M. Dunajski
چکیده

The equations governing anti-self-dual and Einstein-Weyl conformal geometries can be regarded as ‘master dispersionless systems’ in four and three dimensions respectively. Their integrability by twistor methods has been established by Penrose and Hitchin. In this note we present, in specially adapted coordinate systems, explicit forms of the corresponding equations and their Lax pairs. In particular, we demonstrate that any Lorentzian Einstein-Weyl structure is locally given by a solution to the Manakov-Santini system, and we find a system of two coupled third-order scalar PDEs for a general anti-self-dual conformal structure in neutral signature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformal mappings preserving the Einstein tensor of Weyl manifolds

In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...

متن کامل

Dimensional Reduction of Conformal Tensors and Einstein–Weyl Spaces⋆

Conformal Weyl and Cotton tensors are dimensionally reduced by a Kaluza– Klein procedure. Explicit formulas are given for reducing from four and three dimensions to three and two dimensions, respectively. When the higher dimensional conformal tensor vanishes because the space is conformallly flat, the lower-dimensional Kaluza–Klein functions satisfy equations that coincide with the Einstein–Wey...

متن کامل

تبدیلات دوگانگی آبلی استاندارد در گرانش f(T)

According to the perturbation order, the equations of motion of low-energy string effective action are the generalized Einstein equations. Thus, by making use of the conformal transformation of  the metric tensor, it is possible to map the low-energy string effective action into f(T) gravity, relating the dilaton field to the torsion scalar. Considering a homogeneous and isotropic universe and ...

متن کامل

THE CARTAN-WEYL CONFORMAL GEOMETRY OF A PAIR OF SECOND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS by

We explore the conformal geometric structures of a pair of second-order partial-differential equations. In particular, we investigate the conditions under which this geometry is conformal to the vacuum Einstein equations of general relativity. Furthermore, we introduce a new version of the conformal Einstein equations, which are used in the analysis of the conformal geometry of the PDE’s.

متن کامل

v 1 2 8 M ay 1 99 9 A new conformal duality of spherically symmetric space – times

A contribution linear in r to the gravitational potential can be created by a suitable conformal duality transformation: the conformal factor is 1/(1 + r) and r will be replaced by r/(1 + r), where r is the Schwarzschild radial coordinate. Thus, every spherically symmetric solution of conformal Weyl gravity is conformally related to an Einstein space. This result finally resolves a long controv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015